
Code That Fits in Your Head

Checklist for starting a new code base

Use Git
Automate the build

Treat warnings as errors
0 tolerance for warnings
Linter / static code analysis warnings as errors

Turn on all error messages
Dependencies

 Variables

 Decisions

Stay within a 80x24 character box
 Can help keep method smalls

80 / 24 rule

Can introduce latency

 Maximum time for a test suite :
10 seconds

#sharingiscaring by Yoan THIRION @yot88

By Mark Seemann

Scientist or Artist ?
Engineer or Craftsman ?
Gardener or Chef ?
Poet or an Architect ?

Are we a :

Art or Science ?

None of the above
And little of all of the above

Follow heuristics

Rules of thumb Guidelines

That can be taught

Checklists

"This book can help transition
from programmer to software engineer."

Help focus on the hard parts
Taking your mind off the trivial things

An aid to memory

Should enable / support / liberate
Not to constrain

Place related code together

WYSIATI
What You See Is All There Is

Organise your code so that the relevant info is activated

When writing code When reading code

Context
Clear infos Context

is gone...

Readability

Code should produce value
Some code produces no *immediately measurable* value

Value

Tackling Complexity

Much software lives for decades
A continual effort to make it evolving

Sustainability

Should not be prohibited

"Optimise code for readability."

From 4 to 7 pieces of information
Our brain can't keep track of all

Short-Term Memory

The core problem that software engineering
should solve is that it's so complex that it

doesn't fit the human brain.

Vertical Slice "Don't trust yourself to
write correct code."

Walking skeleton
Get to working software as soon as possible

Always find a motivation / driver
For making changes to the code

Use X-Driven development methodologies

TDD
BDD

DDD

Type-Driven
Development

Property-Driven
Development

Outside-in

Unpolluted Domain Model
Unpolluted by implementation details

Objects like "Repository"
Hard to unit test : depends on a subsystem

Humble Objects

Favor automated tests
Can use cURL for example

Perform smoke test

Encapsulation
A contract introduces / formalises a level of trust

Use it as a driver for changes
From one working state to another
Move in small increment
Driven by tests

Transformation Priority Premise {} → nil
nil → constant
...
array → container
...
expression → function
variable → assignment
...

Science of TDD

Prediction of falsifiable outcome
Perform an experiment
Measure the result

Form a hypothesis Compare
The actual to the predicated one

Refactor
 Can you improve the code ?

Design by contract
Interact with an object without knowing implementation details
Enables us to change the implementation (refactor)
Think of an object in an abstract way
Replace details of an object's with a simpler contract

Protection of invariants
Guard clause + Postel's Law Always valid

Object should never be in an invalid state
Not the caller's responsibility

"Be conservative in what you send, be liberal in what you accept"

Triangulation

"as the tests get more specific, the code gets more generic"

Add more test cases

until

Have defeated the Devil

min <= r.At <= max

If it takes 3 months for a new employee to be productive
Programmers become irreplaceable

Legacy code and memory

What happens when you change the structure of code ?

Information in Long Term Memory becomes outdated
Gets harder to work with the code base
Acquired knowledge no longer applies

Decomposition

Code gradually becomes more complicated
If no one pays attention top the overall quality

Code rot

Agree on a threshold can help curb code
Cyclomatic complexity (<8 for ex)

Thresholds

fits in a Hex Flower

Plot outcome related to a
branch in the code

No more than 7 things in a
single piece of code

Code that fits in your head Cohesion
"Things that change at the same rate belong together.

Things that change at different rates belong apart - Kent Beck"

Parse don't validate

Instead of "IsValid"

Return a Maybe Callers will be "forced"
to handle both cases

 "If you can measure the essence of a method in the signature,
then that's a good abstraction"

Establish a culture that actively pays attention to code quality

API Design

 A set of methods, values, functions , objects
Enables you to interact with an encapsulated package of code

 Affordance : An interface is an affordance

 Clear how to use it
from its shape

on API
dot-driven development
Degree of discoverability

Means "mistake-proofing"
Mistake-proof artefacts and processes

 Poka-Yoke

Favor well-named code
over comments

 Write code for Readers

 Use types to keep you honest

It may be you

X-out your code
public interface IReservationsRepository
{
 Task Xxxx(Reservation reservation);
 Task<IReadOnlyCollection<Reservation>> Xxx(DateTime dateTime);
 Task<Reservation?> Xxx(Guid id);
}

See if you can still figure out what they do
Helps you empathize with future readers

"We can distinguish them without knowing
implementation details."

Methods with side-effects
Should return no data (void)

 Command

Command Query Separation

 Methods that do return data
Should have no side effects

 Query

1. Guide the reader by giving APIs distinct types
2. Guide the reader by giving methods helpful names
3. Guide the reader by writing good comments
4. Guide the reader by providing illustrative examples as automated tests
5. Guide the reader by writing helpful commit messages
6. Guide the reader by writing good documentation

 Hierarchy of communication

"Don't say anything with a comment that you can say with a method name.
Don't say anything with a method name you can say with a type"

Teamwork

The best place to explain "why"
Follow 50/72 rule

Use commit messages

 Continuous Integration

Integration means
 merging

 Decrease integration
 risks

Make small changes

 it is a practice

 Merge as often as you can

Integrate at least every 4 hours

If you can't complete a feature in 4 h

 Hide it behind a feature flag

Collective Code Ownership

If a single person 'owns'a part of the code base
You're vulnerable to team changes

Bus / Lottery factor

 How many team members can be hit by a bus before development halts ?

"Any code changes should involve more than one person"

Pair Programming
 Prevent knowledge silos

Mob Programming
Great for knowledge transfer

Code review
Check wether the code fits in your head

Set aside time for them

Rejection
 is an option

Augmenting code

Strangler Pattern

"For any significant change; don't make it in place; make it side-by-side."

Add a new method
Gradually move callers over
Finally delete the old method

Add a new class
Gradually move callers over
Finally delete the old class

Editing Unit Tests

"Be careful editing unit test code; there's no safety net."

Test
code

Separate refactoring

Production
code

Failure and trust

Don't trust a test that
you haven't seen fail

Separation of concerns

Functional Core, Imperative Shell

With side effects
Close to the edge of the system

Non deterministic queries / behaviors

Complex logic
Write complex logic as pure functions

Logging

The more your code is
composed from pure functions

 The less you need to log

"Log all impure functions, but no more."

Rhythm
Personal

Work in time-boxed intervals
Like 25 minutes

Pomodoro technique

Take breaks

I start my day with two 25-minute time-boxes
Where I try to educate myself

Use time deliberately

Dangerous to fall too far behind
Beginning of each sprint for ex

Regularly update dependencies

Certificates management
Database backups
...

Schedule other things

Troubleshooting
Understanding

Make a prediction / hypothesis
Perform the experiment
Compare outcome to prediction

 Scientific method
Consider if removing some code
Can make the problem go away

Simplify Rubber ducking
Talk to a rubber duck it will solve your problems

Explaining
a problem

tends to produce
new insight

Write a question on
 Stack Overflow
instead

Defects

Reproduce defects
as tests

Create different "containers"
to isolate slow tests

Identify the commit
that caused the problem

git bisect

The Usual Suspects

Spoofing
Tampering
Repudiation
Info disclosure
Denial of Service
Elevation of privilege

STRIDE threat modeling

"Abstraction is the elimination of the irrelevant and the
amplification of the essential" - Robert C. Martin

Other techniques
Property-Based Testing
Behavioral code analysis
...

Team

https://www.oreilly.com/library/view/code-that-fits/9780137464302/
https://www.oreilly.com/library/view/code-that-fits/9780137464302/
https://www.linkedin.com/in/yoanthirion/
https://www.manning.com/books/the-programmers-brain
https://wiki.c2.com/?WalkingSkeleton
https://en.wikipedia.org/wiki/Robustness_principle
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://dev.to/noelworden/improving-your-commit-message-with-the-50-72-rule-3g79
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/feature-toggles.html
https://en.wikipedia.org/wiki/Bus_factor
https://youtu.be/SHOVVnRB4h0
https://trishagee.com/presentations/code_review_best_practice/
https://www.manning.com/books/unit-testing?query=%20Vladimir%20Khorikov
https://www.kennethlange.com/functional-core-imperative-shell/
https://libyear.com/
https://rubberduckdebugging.com/
https://www.linkedin.com/in/yoanthirion/
https://www.linkedin.com/in/yoanthirion/
https://twitter.com/yot88
https://blog.ploeh.dk/
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow
https://www.manning.com/books/the-programmers-brain
https://www.manning.com/books/the-programmers-brain
https://www.manning.com/books/the-programmers-brain
https://wiki.c2.com/?WalkingSkeleton
https://wiki.c2.com/?WalkingSkeleton
https://martinfowler.com/bliki/HumbleObject.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://learning.oreilly.com/library/view/learning-test-driven-development/9781098106461/
https://en.wikipedia.org/wiki/Robustness_principle
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://en.wikipedia.org/wiki/Robustness_principle
https://dzone.com/articles/three-modes-of-tdd
https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html
https://tidyfirst.substack.com/p/tldr-cohesion?s=r
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://2017.ecoop.org/details/ecoop-2017-papers/27/Data-exploration-through-dot-driven-development
https://2017.ecoop.org/details/ecoop-2017-papers/27/Data-exploration-through-dot-driven-development
https://2017.ecoop.org/details/ecoop-2017-papers/27/Data-exploration-through-dot-driven-development
https://2017.ecoop.org/details/ecoop-2017-papers/27/Data-exploration-through-dot-driven-development
https://www.techtarget.com/searcherp/definition/poka-yoke
https://www.techtarget.com/searcherp/definition/poka-yoke
https://www.techtarget.com/searcherp/definition/poka-yoke
https://www.techtarget.com/searcherp/definition/poka-yoke
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://dev.to/noelworden/improving-your-commit-message-with-the-50-72-rule-3g79
https://dev.to/noelworden/improving-your-commit-message-with-the-50-72-rule-3g79
https://dev.to/noelworden/improving-your-commit-message-with-the-50-72-rule-3g79
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://en.wikipedia.org/wiki/Bus_factor
https://en.wikipedia.org/wiki/Bus_factor
https://en.wikipedia.org/wiki/Bus_factor
https://en.wikipedia.org/wiki/Bus_factor
https://en.wikipedia.org/wiki/Bus_factor
https://youtu.be/SHOVVnRB4h0
https://youtu.be/SHOVVnRB4h0
https://trishagee.com/presentations/code_review_best_practice/
https://trishagee.com/presentations/code_review_best_practice/
https://martinfowler.com/bliki/StranglerFigApplication.html
https://www.manning.com/books/unit-testing?query=%20Vladimir%20Khorikov
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://www.manning.com/books/unit-testing?query=%20Vladimir%20Khorikov
https://www.manning.com/books/unit-testing?query=%20Vladimir%20Khorikov
https://www.manning.com/books/unit-testing?query=%20Vladimir%20Khorikov
https://www.kennethlange.com/functional-core-imperative-shell/
https://builtin.com/software-engineering-perspectives/coding-pomodoro-method
https://builtin.com/software-engineering-perspectives/coding-pomodoro-method
https://builtin.com/software-engineering-perspectives/coding-pomodoro-method
https://builtin.com/software-engineering-perspectives/coding-pomodoro-method
https://libyear.com/
https://libyear.com/
https://rubberduckdebugging.com/
https://rubberduckdebugging.com/
https://git-scm.com/docs/git-bisect
https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/STRIDE_(security)
https://fsharpforfunandprofit.com/pbt/
https://pragprog.com/titles/atevol/software-design-x-rays/
https://pragprog.com/titles/atevol/software-design-x-rays/

